Limetime's TimeLine
article thumbnail
반응형

task_struct

- Linux의 커널에서는 task_struct 구조체를 사용하여 커널 영역의 메모리 프로세스를 표현한다.
- 이 구조체에 포함되어 있는 멤버 변수를 이해하는 것은 프로세스 개념을 이해에 도움이 된다.
- Linux에서의 프로세스 관리를 이해할 때, 도움이 된다.
* https://elixir.bootlin.com/linux/v6.0-rc6/source/include/linux/sched.h 참조

 

구조체 분석

struct task_struct {

#ifdef CONFIG_THREAD_INFO_IN_TASK
/*
* For reasons of header soup (see current_thread_info()), this
* must be the first element of task_struct.
*/
struct thread_info thread_info;
#endi
unsigned int __state; => 현재 Task의 실행 상태를 저장한다. (0 : 실행 중이거나 실행(스케쥴) 가능한 상태를 나타냄.

exit_state 멤버의 경우 프로세스의 종료 상태를 저장한다.
0 : 실행중
1 : 시그널로 실행중으로 변환 가능(휴식상태)
2 : 조건이 맞을 때까지 대기 (휴식상태)
4 : 시그널에 의해 정지상태에 있음

 

#ifdef CONFIG_PREEMPT_RT
/* saved state for "spinlock sleepers" */
unsigned int saved_state;
#endif
 
/*
* This begins the randomizable portion of task_struct. Only
* scheduling-critical items should be added above here.
*/
randomized_struct_fields_start
 
void *stack;
refcount_t usage;
/* Per task flags (PF_*), defined further below: */
/* PF_ALIGNWARN : Alignment 경고 메시지를 출력하라. PF_STARTING : 현재 프로세스가 생성중이다.
PF_EXITING : 현재 프로세스가 멈추고 있다. PF_FORKNOEXEC : fork되었지만, exec를 호출하지 않았다.
PF_AUPPERPRIV : super user 권한으로 사용되고 있다. PF_DUMPCORE : core dump 되었다.
PF_SIGNALED : signal에 의해서 kill되었다. PF_MEMALLOC : 메모리를 할당하고 있다.
PF_VFORK : mm_release 시에 부모 프로세스를 깨워라.
PF_USEDFPU : Floating point unit을 프로세스가 현재 quantum 동안에 사용했다. */
unsigned int flags; => 현재 시스템 상태 : per process flags
unsigned int ptrace; => Process를 추적할 때 사용하는 Flag (디버깅)
 
#ifdef CONFIG_SMP
int on_cpu;
struct __call_single_node wake_entry;
unsigned int wakee_flips;
unsigned long wakee_flip_decay_ts;
struct task_struct *last_wakee;
 
/*
* recent_used_cpu is initially set as the last CPU used by a task
* that wakes affine another task. Waker/wakee relationships can
* push tasks around a CPU where each wakeup moves to the next one.
* Tracking a recently used CPU allows a quick search for a recently
* used CPU that may be idle.
*/
int recent_used_cpu;
int wake_cpu;
#endif
int on_rq;
 
int prio;
int static_prio;
int normal_prio;
unsigned int rt_priority; => 프로세스에게 주어진 정적인 우선 순위
 
struct sched_entity se;
struct sched_rt_entity rt;
struct sched_dl_entity dl;
const struct sched_class *sched_class;
 
#ifdef CONFIG_SCHED_CORE
struct rb_node core_node;
unsigned long core_cookie;
unsigned int core_occupation;
#endif
 
#ifdef CONFIG_CGROUP_SCHED
struct task_group *sched_task_group;
#endif
 
#ifdef CONFIG_UCLAMP_TASK
/*
* Clamp values requested for a scheduling entity.
* Must be updated with task_rq_lock() held.
*/
struct uclamp_se uclamp_req[UCLAMP_CNT];
/*
* Effective clamp values used for a scheduling entity.
* Must be updated with task_rq_lock() held.
*/
struct uclamp_se uclamp[UCLAMP_CNT];
#endif
 
struct sched_statistics stats;
 
#ifdef CONFIG_PREEMPT_NOTIFIERS
/* List of struct preempt_notifier: */
struct hlist_head preempt_notifiers;
#endif
 
#ifdef CONFIG_BLK_DEV_IO_TRACE
unsigned int btrace_seq;
#endif
 
unsigned int policy;
int nr_cpus_allowed;
const cpumask_t *cpus_ptr;
cpumask_t *user_cpus_ptr;
cpumask_t cpus_mask;
void *migration_pending;
#ifdef CONFIG_SMP
unsigned short migration_disabled;
#endif
unsigned short migration_flags;
 
#ifdef CONFIG_PREEMPT_RCU
int rcu_read_lock_nesting;
union rcu_special rcu_read_unlock_special;
struct list_head rcu_node_entry;
struct rcu_node *rcu_blocked_node;
#endif /* #ifdef CONFIG_PREEMPT_RCU */
 
#ifdef CONFIG_TASKS_RCU
unsigned long rcu_tasks_nvcsw;
u8 rcu_tasks_holdout;
u8 rcu_tasks_idx;
int rcu_tasks_idle_cpu;
struct list_head rcu_tasks_holdout_list;
#endif /* #ifdef CONFIG_TASKS_RCU */
 
#ifdef CONFIG_TASKS_TRACE_RCU
int trc_reader_nesting;
int trc_ipi_to_cpu;
union rcu_special trc_reader_special;
struct list_head trc_holdout_list;
struct list_head trc_blkd_node;
int trc_blkd_cpu;
#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 
struct sched_info sched_info;
 
struct list_head tasks; => 커널에 존재하는 Task의 연결리스트 노드.
swapper : 0,
init : 1 (유저 공간에 생성된 프로세스들의 부모 프로세스),
kthreadd : 2 (모든 커널 스레드의 부모 프로세스)
* 유저 프로세스 : 라이브러리 코드에서 커널에 요청을 하여 프로세스를 생성
* 커널 프로세스 : 커널 내부 코드 중 kthread_create() 함수를 호출하여 프로세스 생성
연결리스트 형성 방식 : task_struct 구조체의 tasks 노드는 다음 유저 프로세스의 task_struct의 tasks 노드를 가리키게 된다.
#ifdef CONFIG_SMP
struct plist_node pushable_tasks;
struct rb_node pushable_dl_tasks;
#endif
 
struct mm_struct *mm; => mm_struct : 사용자 메모리 영역(주소 공간)에 관한 정보를 가지고 있는 구조체.
일반적으로 같은 프로세스 내의 스레드는 모두 mm이 같다.
struct mm_struct *active_mm;
 
/* Per-thread vma caching: */
struct vmacache vmacache;
 
#ifdef SPLIT_RSS_COUNTING
struct task_rss_stat rss_stat;
#endif
int exit_state;
int exit_code; => 프로세스 종료 시에 돌려줄 값
int exit_signal; => 프로세스 종료 시에 보내야 할 시그널
/* The signal sent when the parent dies: */
int pdeath_signal; => 부모 프로세스가 죽었을 때 보내는 시그널
/* JOBCTL_*, siglock protected: */
unsigned long jobctl;
 
/* Used for emulating ABI behavior of previous Linux versions: */
unsigned int personality; => 현재 프로세스가 실행되기 위해 에뮬레이션할 시스템
 
/* Scheduler bits, serialized by scheduler locks: */
unsigned sched_reset_on_fork:1;
unsigned sched_contributes_to_load:1;
unsigned sched_migrated:1;
#ifdef CONFIG_PSI
unsigned sched_psi_wake_requeue:1;
#endif
 
/* Force alignment to the next boundary: */
unsigned :0;
 
/* Unserialized, strictly 'current' */
 
/*
* This field must not be in the scheduler word above due to wakelist
* queueing no longer being serialized by p->on_cpu. However:
*
* p->XXX = X; ttwu()
* schedule() if (p->on_rq && ..) // false
* smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
* deactivate_task() ttwu_queue_wakelist())
* p->on_rq = 0; p->sched_remote_wakeup = Y;
*
* guarantees all stores of 'current' are visible before
* ->sched_remote_wakeup gets used, so it can be in this word.
*/
unsigned sched_remote_wakeup:1;
 
/* Bit to tell LSMs we're in execve(): */
unsigned in_execve:1;
unsigned in_iowait:1;
#ifndef TIF_RESTORE_SIGMASK
unsigned restore_sigmask:1;
#endif
#ifdef CONFIG_MEMCG
unsigned in_user_fault:1;
#endif
#ifdef CONFIG_COMPAT_BRK
unsigned brk_randomized:1;
#endif
#ifdef CONFIG_CGROUPS
/* disallow userland-initiated cgroup migration */
unsigned no_cgroup_migration:1;
/* task is frozen/stopped (used by the cgroup freezer) */
unsigned frozen:1;
#endif
#ifdef CONFIG_BLK_CGROUP
unsigned use_memdelay:1;
#endif
#ifdef CONFIG_PSI
/* Stalled due to lack of memory */
unsigned in_memstall:1;
#endif
#ifdef CONFIG_PAGE_OWNER
/* Used by page_owner=on to detect recursion in page tracking. */
unsigned in_page_owner:1;
#endif
#ifdef CONFIG_EVENTFD
/* Recursion prevention for eventfd_signal() */
unsigned in_eventfd_signal:1;
#endif
#ifdef CONFIG_IOMMU_SVA
unsigned pasid_activated:1;
#endif
#ifdef CONFIG_CPU_SUP_INTEL
unsigned reported_split_lock:1;
#endif
 
unsigned long atomic_flags; /* Flags requiring atomic access. */
 
struct restart_block restart_block;
 
pid_t pid;
pid_t tgid;
 
#ifdef CONFIG_STACKPROTECTOR
/* Canary value for the -fstack-protector GCC feature: */
unsigned long stack_canary;
#endif
/*
* Pointers to the (original) parent process, youngest child, younger sibling,
* older sibling, respectively. (p->father can be replaced with
* p->real_parent->pid)
*/
 
/* Real parent process: */
struct task_struct __rcu *real_parent;
 
/* Recipient of SIGCHLD, wait4() reports: */
struct task_struct __rcu *parent;
 
/*
* Children/sibling form the list of natural children:
*/
struct list_head children;
struct list_head sibling;
struct task_struct *group_leader;
 
/*
* 'ptraced' is the list of tasks this task is using ptrace() on.
*
* This includes both natural children and PTRACE_ATTACH targets.
* 'ptrace_entry' is this task's link on the p->parent->ptraced list.
*/
struct list_head ptraced;
struct list_head ptrace_entry;
 
/* PID/PID hash table linkage. */
struct pid *thread_pid;
struct hlist_node pid_links[PIDTYPE_MAX];
struct list_head thread_group;
struct list_head thread_node;
 
struct completion *vfork_done;
 
/* CLONE_CHILD_SETTID: */
int __user *set_child_tid;
 
/* CLONE_CHILD_CLEARTID: */
int __user *clear_child_tid;
 
/* PF_KTHREAD | PF_IO_WORKER */
void *worker_private;
 
u64 utime;
u64 stime;
#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
u64 utimescaled;
u64 stimescaled;
#endif
u64 gtime;
struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
struct vtime vtime;
#endif
 
#ifdef CONFIG_NO_HZ_FULL
atomic_t tick_dep_mask;
#endif
/* Context switch counts: */
unsigned long nvcsw;
unsigned long nivcsw;
 
/* Monotonic time in nsecs: */
u64 start_time;
 
/* Boot based time in nsecs: */
u64 start_boottime;
 
/* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
unsigned long min_flt;
unsigned long maj_flt;
 
/* Empty if CONFIG_POSIX_CPUTIMERS=n */
struct posix_cputimers posix_cputimers;
 
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
struct posix_cputimers_work posix_cputimers_work;
#endif
 
/* Process credentials: */
 
/* Tracer's credentials at attach: */
const struct cred __rcu *ptracer_cred;
 
/* Objective and real subjective task credentials (COW): */
const struct cred __rcu *real_cred;
 
/* Effective (overridable) subjective task credentials (COW): */
const struct cred __rcu *cred; => 현재 Task의 증명(인증?) 정보를 가리키는 포인터.

usage : cred의 참조 카운터. 하나의 cred 구조체는 여러 개의 프로세스에서 동시에 사용될 수 있다.
uid : 프로세스를 소유하고 있는 UID를 저장한다. 0이면 최고관리자 권한(setuid(0))
euid : Effective UID를 저장한다. 권한 검사에 실제로 사용되는 값을 저장하며, 0으로 덮 어쓰면 최고관리자 권한을 획득할 수 있다. 일반적으로 UID와 같은 값을 가진다.
gid, egid : 각각 Real GID와 Effective GID를 저장한다. (Group ID)
suid : 보관된 사용자 ID(Saved User ID)
fsuid : 파일 시스템 사용자 ID (File System User ID)

 
#ifdef CONFIG_KEYS
/* Cached requested key. */
struct key *cached_requested_key;
#endif
 
/*
* executable name, excluding path.
*
* - normally initialized setup_new_exec()
* - access it with [gs]et_task_comm()
* - lock it with task_lock()
*/
char comm[TASK_COMM_LEN]; => 실행 파일 또는 스레드의 이름을 저장.

ps 명령의 CMD 필드에 프로세스 이름이 출력된다.

struct nameidata *nameidata;

 
#ifdef CONFIG_SYSVIPC
struct sysv_sem sysvsem;
struct sysv_shm sysvshm;
#endif
#ifdef CONFIG_DETECT_HUNG_TASK
unsigned long last_switch_count;
unsigned long last_switch_time;
#endif
/* Filesystem information: */
struct fs_struct *fs; => 파일에 대한 접근 시 확인할 정보 저장 : File System Info.
 
/* Open file information: */
struct files_struct *files; => 열린 파일의 Descriptor 정보를 가지고 있음. (파일 기술자 포인터)
일반적으로 같은 프로세스 내의 스레드는 모두 files가 같다.
 
#ifdef CONFIG_IO_URING
struct io_uring_task *io_uring;
#endif
 
/* Namespaces: */
struct nsproxy *nsproxy;
 
/* Signal handlers: */
struct signal_struct *signal;
struct sighand_struct __rcu *sighand;
sigset_t blocked; => 마스킹 된 시그널
sigset_t real_blocked;
/* Restored if set_restore_sigmask() was used: */
sigset_t saved_sigmask;
struct sigpending pending; => Process가 pending signal을 받으면 값이 0이 된다. (처리를 기다리고 있는 시그널 리스 트)
unsigned long sas_ss_sp; => 시그널과 관련된 스택
size_t sas_ss_size; => 스택의 크기
unsigned int sas_ss_flags;
 
struct callback_head *task_works;
 
#ifdef CONFIG_AUDIT
#ifdef CONFIG_AUDITSYSCALL
struct audit_context *audit_context;
#endif
kuid_t loginuid;
unsigned int sessionid;
#endif
struct seccomp seccomp;
struct syscall_user_dispatch syscall_dispatch;
 
/* Thread group tracking: */
/* fork 함수호출은 self_exec_id를 생성하는 프로세스의 parent_exec_id로 받게 되며, exit 함수호출이 이곳에 저장된 값들을 확인해서 어떤 시그널들을 전달해줄지 결정한다. */
u64parent_exec_id; => 부모의 exec_id
u64 self_exec_id; => 자식의 exec_id
 
/* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
/* 메모리 및 파일, 또는 파일 시스템이나 터미널에 대한 할당이나 제거될 때에 사용되는 락이다. */
spinlock_t alloc_lock;
 
/* Protection of the PI data structures: */
raw_spinlock_t pi_lock;
 
struct wake_q_node wake_q;
 
#ifdef CONFIG_RT_MUTEXES
/* PI waiters blocked on a rt_mutex held by this task: */
struct rb_root_cached pi_waiters;
/* Updated under owner's pi_lock and rq lock */
struct task_struct *pi_top_task;
/* Deadlock detection and priority inheritance handling: */
struct rt_mutex_waiter *pi_blocked_on;
#endif
 
#ifdef CONFIG_DEBUG_MUTEXES
/* Mutex deadlock detection: */
struct mutex_waiter *blocked_on;
#endif
 
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
int non_block_count;
#endif
 
#ifdef CONFIG_TRACE_IRQFLAGS
struct irqtrace_events irqtrace;
unsigned int hardirq_threaded;
u64 hardirq_chain_key;
int softirqs_enabled;
int softirq_context;
int irq_config;
#endif
#ifdef CONFIG_PREEMPT_RT
int softirq_disable_cnt;
#endif
 
#ifdef CONFIG_LOCKDEP
# define MAX_LOCK_DEPTH 48UL => Kernel Lock을 받은 횟수를 카운트 한다. (현재 프로세스가 어디에서 lock이 걸 렸는지 나타낸다.)
u64 curr_chain_key;
int lockdep_depth;
unsigned int lockdep_recursion;
struct held_lock held_locks[MAX_LOCK_DEPTH];
#endif
 
#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
unsigned int in_ubsan;
#endif
 
/* Journalling filesystem info: */
void *journal_info;
 
/* Stacked block device info: */
struct bio_list *bio_list;
 
/* Stack plugging: */
struct blk_plug *plug;
 
/* VM state: */
struct reclaim_state *reclaim_state;
 
struct backing_dev_info *backing_dev_info;
 
struct io_context *io_context;
 
#ifdef CONFIG_COMPACTION
struct capture_control *capture_control;
#endif
/* Ptrace state: */
unsigned long ptrace_message;
kernel_siginfo_t *last_siginfo;
 
struct task_io_accounting ioac;
#ifdef CONFIG_PSI
/* Pressure stall state */
unsigned int psi_flags;
#endif
#ifdef CONFIG_TASK_XACCT
/* Accumulated RSS usage: */
u64 acct_rss_mem1;
/* Accumulated virtual memory usage: */
u64 acct_vm_mem1;
/* stime + utime since last update: */
u64 acct_timexpd;
#endif
#ifdef CONFIG_CPUSETS
/* Protected by ->alloc_lock: */
nodemask_t mems_allowed;
/* Sequence number to catch updates: */
seqcount_spinlock_t mems_allowed_seq;
int cpuset_mem_spread_rotor;
int cpuset_slab_spread_rotor;
#endif
#ifdef CONFIG_CGROUPS
/* Control Group info protected by css_set_lock: */
struct css_set __rcu *cgroups;
/* cg_list protected by css_set_lock and tsk->alloc_lock: */
struct list_head cg_list;
#endif
#ifdef CONFIG_X86_CPU_RESCTRL
u32 closid;
u32 rmid;
#endif
#ifdef CONFIG_FUTEX
struct robust_list_head __user *robust_list;
#ifdef CONFIG_COMPAT
struct compat_robust_list_head __user *compat_robust_list;
#endif
struct list_head pi_state_list;
struct futex_pi_state *pi_state_cache;
struct mutex futex_exit_mutex;
unsigned int futex_state;
#endif
#ifdef CONFIG_PERF_EVENTS
struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
struct mutex perf_event_mutex;
struct list_head perf_event_list;
#endif
#ifdef CONFIG_DEBUG_PREEMPT
unsigned long preempt_disable_ip;
#endif
#ifdef CONFIG_NUMA
/* Protected by alloc_lock: */
struct mempolicy *mempolicy;
short il_prev;
short pref_node_fork;
#endif
#ifdef CONFIG_NUMA_BALANCING
int numa_scan_seq;
unsigned int numa_scan_period;
unsigned int numa_scan_period_max;
int numa_preferred_nid;
unsigned long numa_migrate_retry;
/* Migration stamp: */
u64 node_stamp;
u64 last_task_numa_placement;
u64 last_sum_exec_runtime;
struct callback_head numa_work;
 
/*
* This pointer is only modified for current in syscall and
* pagefault context (and for tasks being destroyed), so it can be read
* from any of the following contexts:
* - RCU read-side critical section
* - current->numa_group from everywhere
* - task's runqueue locked, task not running
*/
struct numa_group __rcu *numa_group;
 
/*
* numa_faults is an array split into four regions:
* faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
* in this precise order.
*
* faults_memory: Exponential decaying average of faults on a per-node
* basis. Scheduling placement decisions are made based on these
* counts. The values remain static for the duration of a PTE scan.
* faults_cpu: Track the nodes the process was running on when a NUMA
* hinting fault was incurred.
* faults_memory_buffer and faults_cpu_buffer: Record faults per node
* during the current scan window. When the scan completes, the counts
* in faults_memory and faults_cpu decay and these values are copied.
*/
unsigned long *numa_faults;
unsigned long total_numa_faults;
 
/*
* numa_faults_locality tracks if faults recorded during the last
* scan window were remote/local or failed to migrate. The task scan
* period is adapted based on the locality of the faults with different
* weights depending on whether they were shared or private faults
*/
unsigned long numa_faults_locality[3];
 
unsigned long numa_pages_migrated;
#endif /* CONFIG_NUMA_BALANCING */
 
#ifdef CONFIG_RSEQ
struct rseq __user *rseq;
u32 rseq_sig;
/*
* RmW on rseq_event_mask must be performed atomically
* with respect to preemption.
*/
unsigned long rseq_event_mask;
#endif
 
struct tlbflush_unmap_batch tlb_ubc;
 
union {
refcount_t rcu_users;
struct rcu_head rcu;
};
 
/* Cache last used pipe for splice(): */
struct pipe_inode_info *splice_pipe;
 
struct page_frag task_frag;
 
#ifdef CONFIG_TASK_DELAY_ACCT
struct task_delay_info *delays;
#endif
 
#ifdef CONFIG_FAULT_INJECTION
int make_it_fail;
unsigned int fail_nth;
#endif
/*
* When (nr_dirtied >= nr_dirtied_pause), it's time to call
* balance_dirty_pages() for a dirty throttling pause:
*/
int nr_dirtied;
int nr_dirtied_pause;
/* Start of a write-and-pause period: */
unsigned long dirty_paused_when;
 
#ifdef CONFIG_LATENCYTOP
int latency_record_count;
struct latency_record latency_record[LT_SAVECOUNT];
#endif
/*
* Time slack values; these are used to round up poll() and
* select() etc timeout values. These are in nanoseconds.
*/
u64 timer_slack_ns;
u64 default_timer_slack_ns;
 
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
unsigned int kasan_depth;
#endif
 
#ifdef CONFIG_KCSAN
struct kcsan_ctx kcsan_ctx;
#ifdef CONFIG_TRACE_IRQFLAGS
struct irqtrace_events kcsan_save_irqtrace;
#endif
#ifdef CONFIG_KCSAN_WEAK_MEMORY
int kcsan_stack_depth;
#endif
#endif
 
#if IS_ENABLED(CONFIG_KUNIT)
struct kunit *kunit_test;
#endif
 
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
/* Index of current stored address in ret_stack: */
int curr_ret_stack;
int curr_ret_depth;
 
/* Stack of return addresses for return function tracing: */
struct ftrace_ret_stack *ret_stack;
 
/* Timestamp for last schedule: */
unsigned long long ftrace_timestamp;
 
/*
* Number of functions that haven't been traced
* because of depth overrun:
*/
atomic_t trace_overrun;
 
/* Pause tracing: */
atomic_t tracing_graph_pause;
#endif
 
#ifdef CONFIG_TRACING
/* State flags for use by tracers: */
unsigned long trace;
 
/* Bitmask and counter of trace recursion: */
unsigned long trace_recursion;
#endif /* CONFIG_TRACING */
 
#ifdef CONFIG_KCOV
/* See kernel/kcov.c for more details. */
 
/* Coverage collection mode enabled for this task (0 if disabled): */
unsigned int kcov_mode;
 
/* Size of the kcov_area: */
unsigned int kcov_size;
 
/* Buffer for coverage collection: */
void *kcov_area;
 
/* KCOV descriptor wired with this task or NULL: */
struct kcov *kcov;
 
/* KCOV common handle for remote coverage collection: */
u64 kcov_handle;
 
/* KCOV sequence number: */
int kcov_sequence;
 
/* Collect coverage from softirq context: */
unsigned int kcov_softirq;
#endif
 
#ifdef CONFIG_MEMCG
struct mem_cgroup *memcg_in_oom;
gfp_t memcg_oom_gfp_mask;
int memcg_oom_order;
 
/* Number of pages to reclaim on returning to userland: */
unsigned int memcg_nr_pages_over_high;
 
/* Used by memcontrol for targeted memcg charge: */
struct mem_cgroup *active_memcg;
#endif
 
#ifdef CONFIG_BLK_CGROUP
struct request_queue *throttle_queue;
#endif
 
#ifdef CONFIG_UPROBES
struct uprobe_task *utask;
#endif
#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
unsigned int sequential_io;
unsigned int sequential_io_avg;
#endif
struct kmap_ctrl kmap_ctrl;
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
unsigned long task_state_change;
# ifdef CONFIG_PREEMPT_RT
unsigned long saved_state_change;
# endif
#endif
int pagefault_disabled;
#ifdef CONFIG_MMU
struct task_struct *oom_reaper_list;
struct timer_list oom_reaper_timer;
#endif
#ifdef CONFIG_VMAP_STACK
struct vm_struct *stack_vm_area;
#endif
#ifdef CONFIG_THREAD_INFO_IN_TASK
/* A live task holds one reference: */
refcount_t stack_refcount;
#endif
#ifdef CONFIG_LIVEPATCH
int patch_state;
#endif
#ifdef CONFIG_SECURITY
/* Used by LSM modules for access restriction: */
void *security;
#endif
#ifdef CONFIG_BPF_SYSCALL
/* Used by BPF task local storage */
struct bpf_local_storage __rcu *bpf_storage;
/* Used for BPF run context */
struct bpf_run_ctx *bpf_ctx;
#endif
 
#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
unsigned long lowest_stack;
unsigned long prev_lowest_stack;
#endif
 
#ifdef CONFIG_X86_MCE
void __user *mce_vaddr;
__u64 mce_kflags;
u64 mce_addr;
__u64 mce_ripv : 1,
mce_whole_page : 1,
__mce_reserved : 62;
struct callback_head mce_kill_me;
int mce_count;
#endif
 
#ifdef CONFIG_KRETPROBES
struct llist_head kretprobe_instances;
#endif
#ifdef CONFIG_RETHOOK
struct llist_head rethooks;
#endif
 
#ifdef CONFIG_ARCH_HAS_PARANOID_L1D_FLUSH
/*
* If L1D flush is supported on mm context switch
* then we use this callback head to queue kill work
* to kill tasks that are not running on SMT disabled
* cores
*/
struct callback_head l1d_flush_kill;
#endif
 
#ifdef CONFIG_RV
/*
* Per-task RV monitor. Nowadays fixed in RV_PER_TASK_MONITORS.
* If we find justification for more monitors, we can think
* about adding more or developing a dynamic method. So far,
* none of these are justified.
*/
union rv_task_monitor rv[RV_PER_TASK_MONITORS];
#endif
 
/*
* New fields for task_struct should be added above here, so that
* they are included in the randomized portion of task_struct.
*/
randomized_struct_fields_end
 
/* CPU-specific state of this task: */
struct thread_struct thread; => 프로세서의 레지스터 값을 저장 (HW 컨텍스트 저장)
 
/*
* WARNING: on x86, 'thread_struct' contains a variable-sized
* structure. It *MUST* be at the end of 'task_struct'.
*
* Do not put anything below here!
*/
};
 

반응형
profile

Limetime's TimeLine

@Limetime

포스팅이 좋았다면 "공감❤️" 또는 "구독👍🏻" 해주세요!